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Abstract
The advent of inelastic x-ray scattering techniques has prompted a reawakened
interest in the dynamics of simple liquids. Such studies are often carried out
using simplified models to account for the stochastic dynamics that give rise
to quasielastic scattering. The vibrational and diffusive dynamics of molten
potassium are studied here by an experiment using neutron scattering and
are shown to provide some clues to understand the basic thermodynamics of
the liquid state. The findings reported here suggest ways in which the true
complementarity of neutron and x-ray scattering may be profitably exploited.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The most characteristic feature of a normal (i.e. not deeply supercooled) liquid is the high
mobility of its constituent particles. A polycrystalline solid may respond to an applied shear
stress in a liquid-like fashion ‘flowing’ with [1] an effective viscosity

η � s2kBT/Dd (1)

where s stands for the number of particles across a single crystallite, d the particle diameter
and D for the self-diffusion coefficient. Surprisingly, equation (1) works well for liquid metals
having viscosities about 1013 times smaller than that for the powders for which the recipe was
proposed, provided that s ≈ 1 [2]. The figure of merit here is thus the diffusion coefficient
and early attempts were made on the grounds of kinetic theory to predict the value of such a
quantity. The models used by such theories dealt with ensembles of hard spheres, where the
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Figure 1. Velocity autocorrelation function for molten K at T = 450 K as evaluated by a molecular
dynamics simulation carried out within the N V T ensemble for a system of 500 potassium atoms
contained within a cubic box of length L = 34.31 Å and interacting through the potential described
in [4]. The full line depicts the normalized velocity autocorrelation and crosses show the Gaussian
approximation valid for short times.

basic parameters, apart from the diameter, are the temperature, the packing fraction and the
pair distribution g(r). The bare experimental facts have shown that such attempts, if applied
to a simple liquid close to melting, overestimate D by a factor of about 1.5. The origin of
such a discrepancy was found to be due to the highly entangled nature of particle motions
within a dense liquid, as was illustrated by the seminal work of Rahman [3] on the velocity
autocorrelation function 〈v(t) · v(0)〉 of liquid Ar. For a liquid metal such as potassium,
〈v(t) · v(0)〉 shows a noticeable oscillatory structure such as shown in figure 1. There we see
how at rather short times (t < 0.075 ps), 〈v(t) · v(0)〉 follows a Gaussian that is characteristic
of a gas-like regime dominated by binary collisions and then a well defined oscillatory pattern
appears. The origin of such a pattern is in part due to the oscillatory motions or ‘cage’ effect that
a particle experiences for some characteristic time before relaxing towards local equilibrium.
In molten K such motions persist up to ≈ 2 ps and are understood as well defined collective
oscillations resembling the phonons of the crystal before melting. Their prominence in liquids
such as molten alkali metals with respect to insulators such as Ar is also known to arise from
details concerning the curvature of the interaction potential at its minimum [5].

The relevance of 〈v(t)·v(0)〉 stems from the fact that its integral measures the self-diffusion
coefficient and therefore the negative parts of the curve will yield a value for D significantly
smaller than that calculated from the Gaussian representative of the gas regime. The presence
within 〈v(t) ·v(0)〉 that is a single-particle quantity of an oscillatory structure reminds us of the
complex nature of liquid dynamics at scales of a few picoseconds. Furthermore, it is precisely
the wealth of details found at microscopic scales that provides us with a key to understanding
the anomalies exhibited by some basic thermodynamic quantities of the liquid state. In fact,
up to now the simplest thermodynamic function of a liquid, such as the specific heat, remains
an elusive quantity to calculate with enough accuracy, and most of the tools able to predict the
correct temperature dependence of Cp(T ) once the crystal melts into its ordinary liquid range
are of a phenomenological nature [6–8].

The bare experimental facts show that, contrary to what can be expected from what is
known for crystals, i.e. Cv(T ) increases with temperature up to the melting point where it
approaches the Dulong–Petit value, the specific heat of a liquid metal usually decreases upon
melting and continues decreasing as the temperature is raised [9]. Empirically [9], the specific
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Figure 2. Thermodynamic data for crystalline and liquid potassium. The upper frame depicts
the constant-volume (full) and constant-pressure (broken curves) specific heats of both solid and
molten K. The middle frame shows the temperature variation of the mass density across the melting
point. The lower frame shows the isotropic bulk modulus. Liquid data are taken from [9].

heat of liquid metals can be represented for a restricted range of temperature as

Cp(T ) = a + bT + cT −2 + dT 2 (2)

where a, b, c and d are constants, some of which may be zero or negative (i.e. liquid potassium
data between melting Tm ≈ 336 and 1037 K are described by the following set of values:
37.179, −19.12 × 10−3, 0 and 12.30 × 10−6).

The negative values of a correction term to the Dulong–Petit value of C(T ) for a liquid
was recognized as early as 1937 by Brillouin [10] who proposed that such a correction should
vary from 0 at Tm to R at the critical point due to the progressive loss of shear waves as the
temperature increases. An example of what has just been written is given by thermodynamic
data for liquid potassium shown in figure 2 where it is shown that melting of the crystal is
accompanied by a small change in volume (≈2.54%), a concomitant decrease in the isotropic
bulk modulus (≈10%) and a rather small jump of the specific heat that translates into a change
in entropy at melting �Sm = 6.9 J mol−1 K−1.

Models aiming to account for the temperature variation of Cv(T ) for a liquid usually
incorporate contributions from ‘kinetic’ and ‘structural’ sources that include both long-range
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mass diffusion and those related to the liquid structure. More specifically, statistical-physics
models to calculate the constant-volume specific heat Cv(T ) have been proposed for many
decades [11]. Expressions such as the following:

Cv(T ) = 3R/2 + 2πρ2
∫ ∞

0

[(
∂g(r)

∂T

)
V
�(r) +

(
∂�(r)

∂T

)
V

g(r)

]
r2 dr (3)

where �(r) stands for the effective potential and g(r) for the probability of finding a second
particle at a distance r from the reference particle, give a semiquantitative estimate of the
temperature dependence of the specific heat. However, an evaluation of the predictive
capabilities of equation (3) requires detailed experimental information on (∂g(r)/∂T )V and
on the corresponding derivatives for the potential term that are usually hard to obtain.

A route to gain information on the relative importance of ‘kinetic’ and ‘structural’ sources
on Cv(T ) is given by the measurement of some dynamic properties that are sensitive to both
kinds of motions. For a simple liquid these involve translational mass diffusion that, within the
normal-liquid range, occurs with rates of the order of 10−9 m2 s−1 as well as correlated particle
motions. The latter in turn comprise both wave and stochastic particle motions, observable at
hydrodynamic scales as dilatational and shear waves or as high-frequency collective modes
with characteristic scales of 1012 Hz [12] as well as motions having an average zero frequency
that involve collective rearrangements of neighbours of a ‘tagged particle’ that take place as a
consequence of its diffusion steps.

Our aim here is to illustrate our present level of understanding of the dynamics of simple
liquids by means of a case study of a molten alkali metal, as well as how such results could help
our understanding of the basic thermodynamic phenomena of the liquid state. These kinds
of studies have experienced a renewed interest as the commissioning of new experimental
tools, such as inelastic x-ray scattering [13] or nuclear resonance methods using synchrotron
radiation [14], brought forward new capabilities, allowing the exploration of uncharted parts
of the momentum-transfer Q–energy-transfer h̄ω plane.

2. Experimental details

Here we study liquid K at a temperature close to its melting point (T1 = 343 K ≈ Tm + 7 K) as
well as somewhat above (T2 = 453 K ≈ Tm + 117 K). A preliminary report concerning data
close to melting was given previously [15] and here we will focus on the study of the effect of
increasing the temperature as well as on the thermodynamic relevance of the present findings.

The sample was chosen for a number of reasons. First, naturally abundant K is a mostly
coherent scatterer of neutrons (the ratio of total cross sections becomes σc/σi = 6.26).
This enables us access to the Sc(Q, ω) coherent dynamic structure factor that comprises the
relevant information about the collective dynamics from the measured cross section and also
allows a separate study of Sq.el

i (Q, ω), the incoherent-scattering contribution to the spectra
which is the dominant feature at low momentum transfers (Q’s) and provides information
concerning single-particle motions. Second, molten liquid alkali metals are paradigms of the
‘simple-liquid’ behaviour, i.e. their thermodynamic properties denote an underlying ‘harmonic
behaviour’ as revealed by the values of the ratio of specific heats γ = Cp/Cv ≈ 1,
Cv/NkB ≈ 3R and the spectrum of collective excitations at low Q shows peaks at frequencies
ωp = √

Q2kBT/M S(Q). Finally, previous neutron data that were measured over a restricted
portion of the Q, ω plane [16] portray the dynamics close to melting (Tm = 336.7 K) as
markedly different from other alkali metals. Diffusive motions were found to exhibit a solid-
like behaviour reminiscent of those of associated liquids [16], with a large residence time for
a particle within a ‘cage’.
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Two sets of measurements were carried out at the ISIS pulsed neutron source (UK) on
a sample contained within a custom-built furnace. The IRIS backscattering spectrometer
with PG002 settings for the analyser crystals provided a resolution in energy transfers
�E ≈ 2.4 GHz. The MARI chopper spectrometer was employed using incident energies
Ei = 3.6 THz (�E ≈ 0.1 THz), 7.2 THz (�E ≈ 0.24 THz) and 12 THz (�E ≈ 0.3 THz).
The measurements on IRIS were needed in order to study in detail the translational dynamics
that is needed in order to provide a proper modelling of Sq.el(Q, ω), i.e. the quasielastic part
of the spectrum including both coherent and incoherent components. These high-resolution
measurements were also complemented with those performed at MARI using the lowest Ei

that enable the exploration of a wider energy window at the expense of a loss in resolution for
energy transfers.

The measurements carried out at MARI were aimed at the precise determination of the
coherent-inelastic part of the spectrum Sinel

c (Q, ω).
The experimentally accessible quantity here is the double differential scattering cross

sections:

d2σ

d
 dω
= 1

4π

k

k0
[σcSc(Q, ω) + σi Si(Q, ω)] + higher-order terms (4)

where k/k0 are the wavenumbers of the out- and incoming neutrons (flux factor to convert
neutron density into neutron flux) and Si(Q, ω) and Sc(Q, ω) refer to the incoherent- and
coherent-scattering components weighted by their relative cross sections. The measured cross
sections are brought to an absolute scale by normalization with the scattering of vanadium foil
rolled within the sample volume. A number of corrections need to be applied, such as sample
self-attenuation, multiple-scattering and multiexcitation effects. These corrections are carried
out following [17]. Once these have been applied we obtain the total intensity I (Q, ω) that
fulfils

I (Q, ω) = A[S(Q, ω) ⊗ R(Q, ω)]

S(Q, ω) = σi

σi + σc
Si(Q, ω) +

σc

σi + σc
Sc(Q, ω).

(5)

Here A is a global scaling constant and R(Q, ω) is the appropriate instrument resolution
function that depends on the instrument and on its specific configuration and is determined by
the scattering of thin vanadium foil.

3. Data analysis and results

3.1. Quasielastic spectra

Let us first consider the spectra I q.el(Q, ω) ∝ Sq.el(Q, ω), i.e. the quasielastic part centred at
zero frequencies. It can be isolated from the total spectrum in high-resolution measurements
performed under conditions where the incident energy is too low to populate the high-frequency
collective modes (i.e. Ei < 2.6 THz). For our sample it contains both coherent and incoherent
components that can only be isolated in polarization analysis experiments. However, at low
wavevectors quasielastic scattering is dominated by its incoherent part Sq.el

i (Q, ω) since the

coherent counterpart Sq.el
c (Q, ω) shows an intensity which is modulated by the static structure

factor S(Q) shown in figure 3. Two representative spectra measured for the two temperatures
at midrange of the explored wavevectors are shown in figure 4.

Thermodynamicand transport data pertaining to the two temperatures under consideration
are available in the literature [18]. Relevant values for the macroscopic self-diffusion
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Figure 3. Static structure factor for liquid K close to freezing. Data are taken from [19]. The inset
shows a g(r) radial distribution as computed from molecular dynamics.
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Figure 4. A sample of quasielastic spectra measured on IRIS for a wavevector Q = 0.7 Å−1. The
full line going through the experimental points is a fit to the model that includes incoherent and
coherent contributions as described in the text.

coefficient are 0.38 and 0.67 Å2 ps−1, those for the shear viscosity are 0.521 and 0.327 mPa s
and finally number densities of 0.012 76 and 0.012 36 atoms Å−3 are found.

At low wavevectors one expects Sq.el
i (Q, ω) to follow a prescription based upon kinetic

theory [12, 20] that has been previously tested on molten Na, which is a mostly incoherent
scatterer of neutrons [21]. It predicts a quasielastic spectrum with linewidth �ω(Q) and
amplitude Sq.el

i (Q, 0) that deviates from the long-range Fickian diffusion law following

�ω(Q) = DQ2 − H (δ)Q/Q∗ (6)

Sq.el
i (Q, 0) = [1 + G(δ−1)Q/Q∗]/π DQ2. (7)

Here D stands for the self-diffusion coefficient, Q∗ = 16π MnD2β, M is the particle
mass, n is the number density, δ = D/(D + η/Mn) with η being the shear viscosity [9]
and β = 1/kBT . The functions G(δ−1) and H (δ) are given by Moontfrooij et al [12] in a
parametric form. The first terms in equation (6) stand for hydrodynamic diffusion and the
second terms account for the coupling of mass diffusion with the collective modes. Figure 5
shows how the predictions of equations (6) fare with respect to the measurement. Such an
agreement validates the use of the mode-coupling formulae to represent Sq.el

i (Q, ω) that does
not involve any free parameter. The departure of �ω(Q) from hydrodynamics can be made
more precise if we take as a reference state that described by a regime of binary collisions as



Microscopic dynamics in simple liquids S315

depicted by the Enskog theory. It predicts a diffusion coefficient DE [2]

DE = 1

16

√
πkBT

M

(
6

πny2

)1/3
(1 − y)3

1 − y/2
(8)

that is given in terms of the packing fraction y = πnd3/6 and the hard-sphere diameter d .
The ratios D/DE give an indication of such a deviation and here we found that such quantities
are for both temperatures 0.68 and 0.95, respectively. The strong reduction of the diffusion
coefficient with respect to the Enskog value close to melting and its near equality at the higher
temperature can be explained on more quantitative grounds following [21] by writing

1

D
= M̃B

v + M̃MC
v

kBT/M
(9)

where M̃B
v and M̃MC

v stand for binary and mode-coupling contributions to the Laplace transform
of the memory function for the velocity autocorrelation taken at z = 0. From here we can
evaluate the strength of the mode-coupling contribution that yields [21]

M̃MC
v = kBT/M

D

[
1 − D

DE

]
. (10)

Our data using a value of d = 4.09 Å yield values for M̃MC
v of 5.93 and 0.69 for the two

temperatures, respectively. The large and positive value for the temperature close to melting
reflects the presence of a strong coupling between diffusion and density fluctuations, while at
somewhat higher temperatures such coupling is far weaker. In fact, for T ≈ 485 K such a term
changes sign and for higher temperatures the result is now an enhancement of the diffusion
with respect to the Enskog value.

As regards Sq.el
c (Q, ω) there seems to be no widely accepted model to account for the

shape and width of this spectral component, an exception being the region about Qp, i.e. where
S(Q) shows its maximum. The experimental data for this component was analysed using a
Lorentzian with adjustable width and an amplitude bound to the relative cross section. The Q
dependence of such a linewidth, also plotted in figure 5, shows a minimum at Qp, where S(Q)

shows its main maximum and can be accounted for semiquantitatively by [22]

�ωc(Q) = �ω(Q)

S(Q)[1 − j0(Q R0) + 2 j2(Q R0)]
. (11)

Here R0 corresponds to an atomic diameter and its value is set to that corresponding to the main
minimum in the V (r) pair interaction potential [4], jx() stand for spherical Bessel functions
and use is made of the �ω(Q) instead of Fickian diffusion. As seen there the agreement
between theory and experiment for wavevectors below Qp is only qualitative.

Our present understanding of the stochastic dynamics thus portrays quasielastic scattering
as arising from diffusive motions that enable a density fluctuation to relax. Close to Tm the
diffusion is hampered with respect to the Enskog case since the particle oscillates for a given
time within a ‘cage’ constituted by surrounding particles which hinder its forward motion.
At liquid densities close to melting, the most significant modes that couple to translational
diffusion seem to be those with wavevectors close to Qp [21]. Long-range diffusion thus sets
in when a longitudinal collective mode with wavevector Qp carries the tagged particle together
with its nearest neighbours between different spatial positions. Such a coupling thus gives rise
to motions of a group of particles that results in a coherent quasielastic spectrum showing a
modulation of �ωc(Q) versus Q while its amplitude follows the oscillations of S(Q).
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Figure 5. The two upper frames compare the experimental quasielastic incoherent linewidth
(lozenges) with hydrodynamic diffusion (full lines) as well as the mode-coupling prediction given
by equations (6). The lowest frame compares the experimental estimates for the quasielastic
linewidths (open circles 343 K, lozenges 453 K) with the predictions made from equation (11).

3.2. Spectra for the collective modes

At low Q the spectrum of collective density fluctuations shows the Rayleigh–Brillouin triplet
as predicted by linearized hydrodynamics [5]. As Q increases and crosses the hydrodynamic
limit (usually within the range of Q ≈ 10−2 Å−1) the width of the Brillouin lines increases
due to the onset of scattering processes that limit the lifetime of the underlying excitations.
For potassium at melting, estimates for the lifetime of a longitudinal phonon at the zone
boundary [23] yields a value of 0.56×10−12 s, a figure that sets an upper limit for the lifetimes
of the excitations persisting in the molten state. The mean-free path for such a phonon within
the hot crystal reduces to ≈11 Å, a quantity smaller than the static correlation length within the
liquid above melting, as can be judged from the spatial extent of the oscillations in the partial
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pair static correlation function shown in figure 3. We thus expect to observe in the liquid state
excitations that can be considered as remnants of those present in the hot crystal since the local
structures of the crystal and liquid at such scales of length are not too different.

Models to analyse the Sinel(Q, ω) spectra of collective excitations are often built on
plausibility grounds [12] using a model to represent the inelastic wings supplemented by
a ‘fitting function’ for the quasielastic region. Here, we seek an alternative representation
for Sinel

c (Q, ω) that extends the usual ‘three-pole approximation’ [5] that gives the spectral
lineshape in terms of the first two even reduced frequency moments of Sc(Q, ω):

ω2
0 = 1

S(Q)

∫
dω ω2 R(Q, ω) = Q2kBT

M S(Q)
(12)

ω2
l = 1

ω2
0 S(Q)

∫
dω ω4 R(Q, ω) (13)

and a relaxation time τ = [(ω2
l − ω2

0)/π]−1/2. Here, R(Q, ω) = Sc(Q, ω)(1 −
exp (−h̄ω/kBT )/ω) and a closed form expression for the spectral shape is

R(Q, ω) = 1

π S(Q)

ω2
0(ω

2
l − ω2

0)τ

[ωτ(ω2 − ω2
l ) + (ω2 − ω2

0)
2
. (14)

The second moment is easily calculated using experimental data for S(Q) from [19], while
the fourth and the sixth depend upon details of the interaction potential. For ωl an approximate
formula is given in terms of R0 and a parameter,ωE, playing the role of an Einstein frequency [5]
and gives

ω2
l

.= 3Q2kBT

M
+ ωE

[
1 − 3 sin(Q R0)

Q R0
− 6 cos(Q R0)

(Q R0)2

6 sin(Q R0)

(Q R0)3

]
. (15)

Equation (14) predicts the appearance of well defined inelastic sidepeaks when the
condition 3ω2

0 > ωl holds as well as a linewidth for the coherent part of the quasielastic
spectrum that varies linearly with the wavevector. While equation (14) yields a good
account of spectra measured at the higher temperature using as parameters R0 = 4.7 Å and
ωE = 1.69 THz, the analysis of data close to melting was found to require a somewhat more
elaborate treatment since no reasonable value for the referred parameters could be found. For
such a purpose we sought to refine the expression for the dynamic structure factor that is written
in terms of the memory function M̃(Q, iω):

Sc(Q, ω) = ωβS(Q)

1 − e(−h̄ωβ)
Re[iω + M̃(Q, iω)]−1, (16)

where the tilde stands for Laplace-transformed quantities.
The memory function is often specified by a continued fraction:

M̃(Q, s) = ω2
0[s + K̃ (1)(Q, s)]−1 (17)

with K̃ (n)(Q, s) = K (n)(Q, t = 0)[s + K̃ (n+1)(Q, s)]−1. The usual approach terminates the
continued fraction at n = 1 based upon the assumption that K (2)(Q, t) decays too fast within
our time window, i.e. K̃ (2) = 1/τ . This can be improved by going one step further. In doing
so one arrives at

M̃(Q, s) = ω2
0

[
s +

ω2
l − ω2

0

s + (ω4
s − ω4

l )/(ω
2
l − ω2

0)(s + 1/τ)

]−1

, (18)

where ω4
s is the ratio between the sixth normalized moment and ω2

0.
Figure 6 shows representative spectra measured at MARI as well as the approximation

given in terms of equation (16) using as adjustable parameters τ , ωs and ωl as well as the
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Figure 6. A set of spectra measured on MARI for three representative wavevectors. The left-hand
column depicts spectra for T = 343 K and that on the right-hand side those for T = 453 K.
Experimental data points are depicted by full symbols. Thick full curves show the fitted model
using equation (16). The broken curve shows the symmetrized inelastic intensity as predicted by
equation (16) and the dotted curve depicts the quasielastic contribution.

scale factor A. Inelastic side peaks are seen in the spectra for Q � 1.3 Å for T = 343 K which
are indicative of the presence of propagating density oscillations and become somewhat more
blurred at T = 453 K.

Figure 7 displays plots for ω0 and ωl calculated as described in [5] as well as the estimate for
the latter if left as a free parameter. For most wavevectors the calculated and fitted values for this
quantity are very close, which validates the use of the extended model given by equations (16)–
(18). The hydrodynamic linear dispersion cT Q given by the macroscopic isothermal sound
velocity cT = 1605 m s−1 for T = 343 K and cT = 1529 m s−1 for T = 543 K approaches ω0

from above for T = 543 K approaches ω0 from above for Q � 0.3 Å−1 and Q � 0.45 Å−1 for
both temperatures, respectively. However, both frequencies ωm corresponding to the maxima
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Figure 7. The left-hand frames show the excitation frequencies for both temperatures. Estimates
for the square root of the reduced second frequency moment ω0 are given by the full curves. The
chain curves represent hydrodynamic dispersion 
hyd = cT Q and the long broken curves stand for
c∞ Q (see the text). The square roots of the reduced fourth frequency moments are shown by circles
with a dot when ωl is left as a free parameter and the short broken curves show the estimates for this
quantity if calculated using equation (15) with parameter values ωE = 1.55 THz and R0 = 4.62
for 343 K and ωE = 1.69 THz and R0 = 4.70 for T = 453 K. The full symbols give the ωm peak
frequencies and the crosses show the ωml maxima of the longitudinal current JL(Q, ω) correlations
as calculated from the fitted spectra. The upper-right frame depicts the effective lifetimes τeff as
derived from the model fits for 343 K (open symbols) and 453 K (full dots). The lower-right frame
shows the wavevector dependence of the C11(Q) elastic moduli. The full line shows data for K as
derived from ωl. The thick full symbol at Q = 0 shows the value calculated from bulk and rigidity
moduli of the room temperature crystal.

of the inelastic side peaks and those ωml derived from the maxima of the longitudinal current
CL(Q, ω) = ω2S(Q, ω)/Q2 calculated from the fitted spectra are significantly above ω0.
Since ωml are equivalent to the characteristic frequencies of a damped harmonic oscillator they
may be considered as the true physical frequencies of the oscillatory motion under scrutiny.

At T = 343 K damping effects become increasingly important for Q > 0.6 Å−1. This
is easily seen by the difference between ωml and ωm. Moreover, for Q > 1.3 the excitations
enter an overdamped regime. The damping effects are far more noticeable at T = 453 K, as is
also shown by the larger differences between such frequencies. To quantify the lifetime of the
excitations at both temperatures, a relaxation time is defined in terms of the ratios of the higher-
frequency moments τeff = τ (ω4

s − ω4
l )/(ω

2
l − ω2

0)
2. This amounts to considering K̃ (3) = 1/τ

that corresponds to the additional level employed in the continued-fraction expression given
by equation (18). The assignment to such a parameter with an excitation lifetime relies on its
strict equivalence to such a quantity (i.e. the width of the Brillouin peaks) that occurs as one
approaches the hydrodynamic regime. The result is shown in the upper-left frame of figure 7 and
shows that the lifetimes at temperatures close to melting are at most 0.35 ps, leading to mean-
free-paths of about 6 Å. Increasing the temperature has a deleterious effect on the lifetimes that
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now get substantially reduced. Data for ωm, ωml and ωl approach the Q → 0 hydrodynamic
realm in a way not too different from that followed by other alkali metals [12] showing a large
amount of positive anomalous dispersion. The linear dispersion approached by such data is

given by the high-frequency sound velocity c∞ =
√

(3/βM) + (3ω2
E R2

0/10) = 2490 m s−1

for 343 K and 2778 m s−1 K of an elastic medium being sampled ‘instantaneously’ by a
high-frequency probe.

The mechanisms leading to such large velocity dispersions are understood from classical
hydrodynamics. At frequencies well aboveBT/η ≈ 1 THz, whereBT stands for the isothermal
bulk modulus, the linearized form of the Navier–Stokes formulae become invalid [24]. The
propagation of a density oscillation is then governed by the equations of motion for an isotropic
solid that lead to a dispersion ω2/Q2 = (B + 4

3G)/Mn. A connection with quantities just
considered is made in terms of the wavevector- dependent modulus [5]

C11(Q) = Mnω2
l

Q2
, lim

Q→0
C11(Q) = B + 4

3G. (19)

Information on C11(Q) obtained from ωl is given in figure 7 that also displays the macroscopic
(Q → 0) value calculated for solid K at room temperature [25]. There we see that the liquid
data comes close to the value for the crystal at long wavelengths. The agreement between
the liquid and crystal data, which is also exemplified by the macroscopic data for the bulk
moduli shown in figure 2, is understood from the small variations experienced by the density
upon melting that makes the short-range structure of the liquid, and thus the forces driving the
atomic dynamics, to show a relatively mild change after the crystal structure is lost.

4. Discussion

4.1. Vibratory motions versus diffusion

The picture drawn above portrays high-frequency vibratory motions as a remnant of those from
their parent crystals at temperatures close to melting. Such motions correspond to relatively
short-lived configurations that become unstable after a fraction of a picosecond. Particle
dynamics at longer times is dominated by collisions with its neighbours that follow a given
particle on its long-range diffusion track. To compare the extent of vibratory and diffusive
motions on more quantitative grounds we show in figure 8 the results of an analysis carried
out following the instantaneous normal mode scheme [26] of some recent molecular dynamics
results. The basics of the method consists in taking from the simulation an instantaneous
N-particle configuration, expanding the potential energy about such a configuration and from
there calculating the force-constant and first-derivative matrices. The procedure is averaged
over a significant number of configurations and, after completion, diagonalization of the
3N-dimensional force-constant matrix yields a set of individual particle eigenvalues and
eigenvectors. The obtained frequencies, that may be real or imaginary depending upon the
stability of a given mode, are usually plotted as a density of states Z INM(ω) on a frequency
axis including negative (unstable) and positive (stable) lobes, as is shown in figure 8. The
positive lobe of Z INM(ω) is thus an analogue to the phonon density of states of the crystal, and
indeed it is an easy matter to see that the extent in frequencies of both crystal and Z INM(ω)

are comparable, with the exception of the lowest- and highest-frequency sides which show in
the liquid an excess of states with respect to the crystal. From figure 8 we see that increasing
the temperature from close to melting to T/Tm = 1.33 leads to a decrease in the number of
stable modes for frequencies of 0.9–2.9 THz and an increase in the number of unstable modes
with frequencies −0.25 to −1.4 THz and a small shift of the centre of gravity 〈ωu〉 of the
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Figure 8. The upper frame shows the spectral distribution of instantaneous normal modes. The
lower frame depicts the participation ratio.

distribution for unstable modes from −1.21 to −1.22 THz. The fraction of unstable modes fu

(i.e. the relative area of the lobe of unstable frequencies) increases from 0.16 at 343 K to 0.
20 at T = 453 K, which results in a concomitant decrease of the fraction of stable harmonic
modes from 0.84 to 0.80. Since the diffusion coefficient is known to follow D � (〈ωu〉 fu)

γ

with γ ≈ 1 we see that the increase in temperature results in a strong increase of the diffusion
coefficient and a concomitant decrease in the density of finite-frequency harmonic modes.

As regards the number of atoms participating in a given mode, figure 8 also shows the
participation ratio defined through the mode eigenvectors [26]. The main result here concerns
the strong increase with temperature in the number of atoms that take part in unstable and low-
frequency stable modes which occur up to frequencies of ≈1 THz. The increase in the value
of the self-diffusion coefficient is thus accompanied by an increase in the number of atoms that
execute such motions. In contrast, the percentage of atoms taking part in vibrational motions
does not experience a very significant variation.

4.2. Dynamics versus thermodynamics

From results described in the previous section we expect the contribution of finite-frequency
vibrations to the specific heat to decrease with increasing temperature because of the decrease
in the density of modes referred to above. As regards that corresponding to diffusive motions
we expect that it will increase with temperature, as expected from simple kinetic considerations
as well as from the increase in the participation ratio referred to above. A direct quantitative
estimate of how these findings lead to the observed variation of C(T ) seems, however, out
of reach. Alternatively, a connection between what is observed experimentally and the
T dependence of the specific heat can be sought on the grounds of semi-phenomelogical
approaches. To pursue such a route we follow the steps of [7] that decompose the specific



S322 C Cabrillo et al

heat into an ion-motion and an electronic part Cv = CI + CE. The latter, which amounts
to 0.080 in units of R, can be easily estimated for free-electron liquids by means of band-
theory calculations that yield CE = π2 NkBT n(εF) [8] in terms of n(εF), i.e. the electron
density of states per atom at the Fermi energy. The difference Cv − CE yields a ion-motional
contribution [7, 8]

CI = 3R + Canh + Cb (20)

where the first term is the quasiharmonic contribution and is the major part of CI, while
Canh is the anharmonic contribution which is found to be a universal function of the reduced
temperature T/Tm with values ranging from 0.4R at Tm to zero for T � 2Tm. Both
contributions show values not too different from those of the hot crystal for which they are the
only contributions to the specific heat. For the liquid the additional Cb ‘boundary’ term [7]
accounts for the existence within the liquid of potential valleys which do not extend infinitely in
all directions but are truncated along some directions that coincide with intersections between
potential energy valleys. Such a term is negative and varies from zero at Tm to −0.6R at
T = Tm. It is thus such a term that makes Cv decrease in value from that at melting at higher
temperatures.

Models to evaluate Cb have appeared [7] and its explicit evaluation requires information
about the frequenciesωλ and amplitudes aλ of the N ions composing the liquid or some average
quantities pertaining to both. The expression is [7]

Cb = −kB

∑
λ

Bλ(b
2
λ + 1

2 + Bλ)

Bλ = bλ exp (−bλ)
2

√
π erf bλ

bλ =
√

Mω2
λa2

λ/2kBT .

(21)

The frequencies ωλ comprise both diffusive and oscillatory motions studied in the
experiment just described and extend from zero up to a high-frequency cut-off. An approximate
separation of both kinds of motion is accomplished with the help of frequency spectra Z(ω)

such as that shown in figure 9 calculated from computer molecular dynamics. The curves shown
there have an ordinate at the origin proportional to 2M D/πkBT and can be decomposed into
two bands representing diffusive and oscillatory regions with the aid of models for Z(ω) given
in [27]. There [27], the total Z(ω) is decomposed into an oscillatory part characterized by a
single frequency ωosc, a friction constant µosc and a parameter aosc related to the inverse of
the oscillation lifetime and a stochastic part specified by the self-diffusion coefficient and an
additional friction term γr that only affects the stochastic forces. The expression just referred
to is [27]

Z(ω) = 2M D

πkBT

[
f 2

(ω2 + µ2
osc)ω

2
osc + f 2

+
f

ω2
osc

ω2aosc

µ2
osc

][(
ω2 − ω2

osc

ω2
osc

)2

+
ω2a2

osc

ω2 + µ2
osc

]−1

(22)

with f = γrµosc, the self-diffusion coefficients set to the macroscopic values and the rest of the
parameters left as adjustable. Parametric fits to the equation given above and the corresponding
results shown in figure 9 tell us that the approximation has to be regarded as of semi-quantitative
nature. The best-fit values for the oscillation frequencies ωosc = 1.80 and 1.76 THz for the
two temperatures are not too far from the estimates for the Einstein frequencies quoted above,
the friction terms µosc identifiable with viscous effects decrease by 41% to be compared with
a drop of 37% in the shear viscosity and finally the parameter aosc that varies from 1.207 at
343 K to 1.223 at 453 K, which is interpreted as a decrease in oscillation lifetime of a mere
2%. Also, the parameter γr associated with diffusive motions drops 1.6 times with increasing



Microscopic dynamics in simple liquids S323

0.00

0.10

0.20

0.30

0.40

0.50

0 1 2 3 4

450 K
350 K
350 K (fit)
450 K (fit)

Z
 (

ωωωω
) 

(T
H

z-1
)

Frequency (THz)

Figure 9. Normalized spectral frequency distributions as calculated from the velocity
autocorrelation functions corresponding to a molecular dynamics simulation on molten K at 350 and
450 K. Both distributions are normalized to unit area. The full and dotted curves are approximations
to both frequency spectra calculated using equation (22).

temperature, which compares with the ratio of 1.4 times expected on the grounds of Brownian
dynamics (i.e. γr ≈ kBT/M D). With such provisos in mind we use the expression given
above to carry out an approximate separation of the frequency spectrum into a diffusive and
an oscillatory part. As for the mode amplitudes, the following simplifying assumptions were
undertaken:

(a) the motions comprising mass diffusion were assigned a common amplitude given by the
Langevin formula so that a2

λ = 6M D2/kBT ,
(b) those corresponding to the vibrational displacements were approximated by aλ =

c(Q)τeff , where c(Q) = ωQ/Q is the phase velocity of the collective excitation and
τ their lifetimes as estimated from measurement.

Finally the frequency interval where Z(ω) shows non-zero values (up to ≈5 THz) was divided
into bins of widths comparable with the achieved instrument resolution (≈0.3 THz). Under
such simplifying assumptions one gets Cb = −0.02R and −0.06R for the two temperatures
under consideration. The values for the total constant-volume specific heat are then compared
with experimental data in figure 2 and found to be in fair agreement. The magnitude of Cb at
temperatures not far from melting is thus comparable to that of electronic origin (0.08R) but
significantly smaller than that accounting for anharmonic effects (0.4R).

5. Concluding remarks

Studies on the dynamics of simple liquids, such as the light molten alkali metals (Li, Na) [12],
have experienced a greater interest recently due to the new experimental capabilities brought
forward by third generation synchrotron sources that allow the measurement of excitations free
from the kinematic restriction inherent to neutron scattering [13]. The present data complement
the well studied cases of the heavier alkalis (Rb,Cs) explored by means of neutron spectroscopy
and those of the lighter Li and Na examined with the x-ray technique [12]. Our interpretation of
the origin of the high-frequency sound velocity can easily be extended to the other alkali metals
for which elastic-constant data are available (Li, Na and Cs, [25]). The values calculated from
elastic data of the hot crystals yield phase velocities of 6692 m s−1 (Li), 3545 m s−1 (Na)
and 1363 m s−1 (Cs), which compare with reported values for liquids of ≈6500, 3025 and
1061 m s−1, respectively.
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At the present moment, one of the main limitations of the inelastic x-ray technique
concerns the achievable energy resolution which can hardly be improved beyond ≈1 meV
without reducing the photon flux down to impractical limits. There is, however, a number of
significant studies that can be done using both techniques in a complementary fashion such
as using neutron scattering to study in detail the quasielastic spectrum of the lighter alkalis
using such information for a proper modelling of the Sinel(Q, ω) measured by x-rays. Such
complementarity is even more evident in the case of more complex liquids such as transition
metals [28], semimetals [29] or alloys [30]. Here the kinematic range available to neutron
scattering is severely limited but, in contrast, information from high-resolution inelastic-
and quasielastic neutron scattering will certainly solve some apparent disagreements between
results derived from both techniques.

Complex molecular materials have also been examined using the inelastic scattering
of x-rays [31]. An assessment of the results obtained must, however, take into account
the usually large number of low-lying excitations of different nature from the ‘acoustic’
phonons that contribute to the measured spectral intensity [32], a fact well known from
studies on polycrystals [13], and are dumped together in most analysis of experimental
data. In this respect, establishing connections between observation at microscopic scales
and thermodynamics provide a safeguard against oversimple interpretations of experimental
data. Finally, high sound-velocity materials, such as molten alumina [33] or liquid alloys of
geophysical interest to be studied under extreme conditions (i.e. FeNiS or FeNiSi) where the
‘acoustic’ excitations can be isolated experimentally,are some examples where such techniques
are being profitably applied.
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